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Scaling laws of creep rupture of fiber bundles
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We study the creep rupture of fiber composites in the framework of fiber bundle models. Two fiber bundle
models are introduced based on different microscopic mechanisms responsible for the macroscopic creep
behavior. Analytical and numerical calculations show that above a critical load the deformation of the creeping
system monotonically increases in time resulting in global failure at a finite timet f , while below the critical
load the system suffers only partial failure and the deformation tends to a constant value giving rise to an
infinite lifetime. It is found that approaching the critical load from below and above the creeping system is
characterized by universal power laws when the fibers have long-range interaction. The lifetime of the com-
posite above the critical point has a universal dependence on the system size.
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I. INTRODUCTION

Under high steady stresses fiber composites may und
time-dependent deformation resulting in failure called cre
rupture, which limits their lifetime, and hence, has a hi
impact on the applicability of these materials in construct
elements. Both natural fiber composites like wood@1–4# and
various types of fiber reinforced composites@5–10# show
creep rupture phenomena, which have attracted continu
theoretical and experimental interest over the past years.
underlying microscopic failure mechanism of creep rupt
is very complex depending on several characteristics of
specific types of materials, and is far from being well und
stood. Theoretical studies encounter various challenges
the one hand, applications of fiber composites require
development of analytical and numerical models, which
able to predict the damage histories of loaded composite
terms of the specific parameters of constituents. On the o
hand, creep rupture, similarly to other rupture phenome
presents a very interesting problem for statistical physics
is still an open problem to embed creep rupture into
general framework of statistical physics and to underst
the analogy between rupture phenomena and phase tr
tions.

Creep failure tests are usually performed under unia
tensile loading when the specimen is subjected either
constant loadso or to an increasing load~ramp loading! and
the time evolution of the damage process is monitored
recording the strain« of the specimen and the acoustic si
nals emitted by microscopic failure events@1–10#. In the
present paper we study the creep rupture of fiber compo
in the framework of fiber bundle models@11–25# focusing
on general characteristics of creep rupture. Our main go
to reveal the universal aspects of a creeping system, w
do not depend on specific material properties. We will der
scaling laws that emerge when approaching the failure st
both from below and above; furthermore, the finite-size sc
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1063-651X/2003/67~6!/061802~8!/$20.00 67 0618
go
p

n

us
he
e
e
-
on
e
e
in
er
a,
it
e
d
si-

l
a

y

es

is
ch
e
ss
l-

ing of the time to failure is studied. Beyond the theoretic
understanding, exploring universal features of creep he
evaluate experimental data and can serve as a guide to
tract the relevant information invariant under the variation
specific material properties.

We consider only the case of global load sharing~GLS!
for the redistribution of load following fiber failure@13,18–
24#. For several types of composite materials, GLS provid
an adequate approach@26–30#, and it has the advantage th
many of the important GLS results can be obtained in clo
analytic forms. During creep at the critical point and abo
it, stress localization occurs, which can be captured by lo
ized load sharing in fiber bundle models@13,17,21#, but this
is beyond the scope of our investigations. The present st
is focused on analytic modeling in the framework of GL
We also develop efficient simulation techniques for test
the analytic results, furthermore, to study finite-size syste
Since similar studies with local load sharing require larg
scale computer simulations and a large amount of data
cessing, it will be presented in a forthcoming publication.

In a broad class of continuously reinforced materials
significant stress enhancement occurs around failed fiber
that a consistent interpretation of the damage process ca
obtained in the framework of GLS@26–30#. Our theoretical
results proved to be in a good qualitative agreement w
recent experiments on the creep rupture life of metal ma
composites reinforced with brittle fibers@26–30#.

II. MODELS

In order to work out a theoretical description of cre
failure we introduce two fiber bundle models improving t
classical fiber bundle models@11,12#, which have proven
very successful in the study of fracture of disordered ma
rials @13–20,23,24#. The two models differ in the micro-
scopic mechanisms assumed to be responsible for the m
roscopic creep behavior:~1! in the first approach the fiber
themselves are viscoelastic and they break when their de
mation exceeds a stochastically distributed threshold va
~strain controlled breaking!, ~2! in the second model the fi
©2003 The American Physical Society02-1
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bers are linearly elastic until they break stochastically in
stress-controlled way; however, after breaking, their rel
ation is not instantaneous but the sliding of the broken fi
with respect to the matrix material, and the yielding or cre
ing of the matrix introduces an intrinsic time scale for t
relaxation.

The mathematical formalism of the first model~viscoelas-
tic bundle! is more simple; hence, the steps of analysis w
be presented in details for this case. For the second m
the corresponding results will be summarized.

A. Viscoelastic fiber bundle

1. Analytic model

Our model consists ofN parallel fibers having viscoelasti
constitutive behavior. For simplicity, the pure viscoelas
behavior of fibers is modeled by a Kelvin-Voigt elemen
which consists of a spring and a dashpot in parallel~see Fig.
1! and results in the constitutive equation

so5b«̇1E«, ~1!

whereb denotes the damping coefficient andE is the Young
modulus of fibers. Equation~1! provides the time-dependen
deformation«(t) of a fiber at a fixed external loadso :

«~ t !5
so

E
~12e2Et/b!1«oe

2Et/b, ~2!

where«o denotes the initial strain att50. It can be seen tha
«(t) converges toso /E for t→`, which implies that the
asymptotic strain fulfills Hook’s law. To incorporate breakin
in the model, we introduce a strain controlled failure cri
rion for fibers: a fiber fails during the time evolution of th
system if its strain exceeds a damage threshold«d , which is
an independent identically distributed random variable of
bers with probability densityp(«d) and cumulative distribu-
tion P(«d)5*0

«dp(x)dx. Due to the validity of Hook’s law

FIG. 1. The viscoelastic fiber bundle: intact fibers are mode
by Kelvin-Voigt elements. After fiber breaking the correspondi
element is removed from the model.
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for the asymptotic strain values, the formulation of the fa
ure criterion in terms of strain instead of stress implies t
under a certain steady load the same amount of damage
curs as in the case of stress controlled failure; however,
breaking of fibers is not instantaneous but distributed o
time. When a fiber fails its load has to be redistributed to
intact fibers. Assuming global load sharing, the time evo
tion of the system under a steady external loadso is finally
described by the equation

so

12P~«!
5b«̇1E«, ~3!

where the viscoelastic behavior of fibers is coupled to
failure of fibers in a global load sharing framework@31#.

For the behavior of the solutions of Eq.~3! two distinct
regimes can be distinguished depending on the value of
external loadso : Whenso is below a critical valuesc , Eq.
~3! has a stationary solution«s , which can be obtained by
setting«̇50 in Eq. ~3!:

so5E«s@12P~«s!#. ~4!

It means that until this equation can be solved for«s at a
given external loadso , the solution«(t) of Eq. ~3! con-
verges to«s whent→`, and no macroscopic failure occur
However, whenso exceeds the critical valuesc no station-
ary solution exists; furthermore,«̇ remains always positive
which implies that fors.sc the strain of the system«(t)
monotonically increases until the system fails globally a
time t f @31#.

In the regime so<sc , Eq. ~4! also provides the
asymptotic constitutive behavior of the fiber bundle, whi
can be measured by controlling the external loadso and
letting the system relax to«s . It follows from the above
argument that the critical value of the loadsc is the static
fracture strength of the bundle, which can be determin
from Eq. ~4!, assc5E«c@12P(«c)#, where«c is the solu-
tion of the equationdso /d«su«c

50 @18#. Sinceso(«s) has a

maximum valuesc at «c , in the vicinity of «c it can be
approximated as

so'sc2A~«c2«s!
2, ~5!

where the multiplication factorA depends on the probability
distributionP. A complete description of the system can
obtained by solving the differential equation~3!. After sepa-
ration of variables the integral arises

t5bE d«
12P~«!

so2E«@12P~«!#
1C, ~6!

where the integration constantC is determined by the initial
condition«(t50)50.

The creep rupture of the viscoelastic bundle can be in
preted so that forso<sc the system suffers only a partia
failure that implies an infinite lifetime,t f5`, and the emer-
gence of a macroscopic stationary state, while above
critical loadso.sc global failure occurs at a finite timet f ,

d

2-2
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SCALING LAWS OF CREEP RUPTURE OF FIBER BUNDLES PHYSICAL REVIEW E67, 061802 ~2003!
which can be determined by evaluating the integral in Eq.~6!
over the whole domain of definition ofP(«).

Below the critical pointso<sc the bundle relaxes to th
stationary deformation«s through a decreasing breaking a
tivity. To find the characteristic time scale of this relaxati
process, the behavior of«(t) has to be analyzed in the vicin
ity of «s . It is useful to introduce a new variabled asd(t)
5«s2«(t). The governing differential equation ofd can be
obtained from Eq.~3! by expanding it around«s :

dd

dt
52

E

b F12
«sp~«s!

12P~«s!
Gd. ~7!

The solution of Eq.~7! has the formd;exp@2t/t#, wheret
is the characteristic time scale of the relaxation process:

t5
b

E

1

F12
«sp~«s!

12P~«s!
G . ~8!

It is a very important question how the relaxation timet
changes when the external driving approaches the cri
point sc from below. Based on Eq.~5! it can be simply
shown that

t;~sc2so!
21/2 for so,sc , ~9!

which means that approaching the critical point from bel
the relaxation time of the system diverges according t
universal power law with an exponent21/2 independent of
the form of disorder distribution. Note that a similar powe
law divergence of the number of successive relaxation s
was found in Refs.@32,33# for a dry fiber bundle subjected t
a constant load.

Above the critical point the behavior of the lifetime of th
system can be analyzed analogously whenso goes tosc
from above. Whenso is in the vicinity of sc , i.e., so5sc
1Dso , whereDso!sc , it can be expected that the curve
«(t) falls very close to«c for a very long time and the break
ing of the system occurs suddenly. Hence, the total time
failure, i.e., the integral in Eq.~6!, is dominated by the region
close to«c when Dso is small. Making use of the powe
series expansion, Eq.~5!, the integral in Eq.~6! can be re-
written as

t f'bE d«
12P~«!

Dso2A~«c2«!2
, ~10!

which has to be evaluated over a small« interval in the
vicinity of «c . After performing the integration it follows

t f'~so2sc!
21/2 for so.sc . ~11!

Thus, t f has a power-law divergence atsc with a universal
exponent2 1

2 independent of the specific form of the diso
der distributionP(«), similar to t below the critical point.
06180
al

a

ps

to

2. Finite size effect

In the above analytic treatment the size of the system,
the number of fibers in the bundle, is infinite. However,
can be expected that the lifetime of a finite bundle ha
nontrivial size scaling even in the case of global load sh
ing. During the creep rupture process the fibers of a fin
bundle break one by one in the increasing order of th
breaking thresholds. Let« j , j 51, . . . ,N denote the breaking
thresholds assigned to the fibers in a realization of
bundle. Since fibers break one by one, the actual load on
intact fibers after the failure ofi fibers iss i5soN/(N2 i ),
where i 50, . . . ,N21, and the timeDt(« i ,« i 11) between
the breaking of thei th and (i 11)th fibers~in the ordered
series! reads as

Dt~« i ,« i 11!52
b

E F lnS « i 112
s i

E D2 lnS « i2
s i

E D G .
~12!

The lifetime t f of a sample ofN fibers takes the form

t f~N!5 (
i 50

N21

Dt~« i ,« i 11!. ~13!

In order to determine howt f depends onN, Eq. ~13! has to
be averaged over many realizations of the disorder distr
tion, which can be performed analytically. The details of t
analytic calculations are summarized in the Appendix.
nally, the average lifetimêt f(N)& of a bundle ofN fibers can
be cast in the form

^t f~N!&'t f~`!1
bso

N E d«E«P~«!@12P~«!#

$so2E«@12P~«!#%3
. ~14!

Equation~14! shows that for finite bundles the average lif
time ^t f(N)& converges to the lifetime of the infinite bund
t f(`) as ;1/N with increasing number of fibersN. It is
interesting to note that in the case of global load sharing
average strength of the bundlesc does not have a size de
pendence.

3. Simulation technique

Most of the analytic results of the preceding sections,
cept for the finite-size scaling oft f , were obtained for infi-
nite bundles. Computer simulations of the creep rupture
finite bundles are needed to justify the validity of analy
predictions for finite systems and to be able to model
rupture process of realistic finite systems.

In the framework of GLS an efficient simulation tech
nique can be worked out for the failure process. Based on
arguments of the preceding subsection, the GLS simula
of the creep process of a bundle ofN fibers proceeds as
follows: ~1! Random breaking thresholds« i , i 51, . . . ,N
are drawn from a probability distributionp, then the thresh-
olds are put into increasing order.~2! The timeDt(« i ,« i 11)
between the breaking of thei th and (i 11)th fibers is calcu-
lated according to Eq.~12!. ~3! The time elapsed till the
breaking of the i th fiber is obtained as t(« i)
2-3
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5(j50
i21Dt(«i ,«i11), from which the deformation as a functio

of time «(t) can be determined by inversion. The lifetimet f

of the finite bundle can be obtained making use of Eq.~13!.
For simulations we considered a uniform distribution

failure thresholds between 0 and a maximum value«m with
the probability density functionp(«)51/«m and distribution
function P(«)5«/«m . In this case the stationary solutio
the critical load and the corresponding critical strain can
obtained asso5E«(12«/«m), sc5E«m/4, «c5«m/2, re-
spectively. «m51 was set in all the simulations. Th
deformation-time diagram«(t) obtained by simulations is
presented in Fig. 2 for several different values ofso below
and abovesc . The two regimes depending on the value
the external loadso can be clearly distinguished.

To test the validity of the universal power-law behavior
t f as a function of the distance from the critical load given
Eq. ~11!, simulations were performed with various disord
distributions, i.e., besides the uniform distribution t
Weibull distribution of the formP(«)512exp@2(«/l)r#
was employed. The value of the characteristic strainl was
set to 1, and the shape of the distribution was controlled
varying the value ofr. The results are presented in Fig.
where an excellent agreement of the simulations and the
lytic results can be observed. Figure 3 supports that the
ponent oft f as a function ofso2sc is universal, it does no
depend on the specific form of the disorder distribution.

To study the finite-size scaling of the time to failuret f , a
uniform distribution was used for the failure thresholds. T
value of the external load was fixed abovesc and the num-
ber of fibersN was varied from 53102 to 107. Averages
were calculated over 104 samples for each system sizeN.
The results obtained by simulations are presented in Fig
where an excellent agreement of simulations and ana
results can be observed for four orders of magnitude in
system sizeN.

FIG. 2. «(t) for several values ofso below and abovesc for a
bundle of 107 fibers. The critical strain«c and the time to failuret f

for one example are indicated.to denotes the characteristic tim
to5b/E of the system.
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B. Slowly relaxing fibers

1. Analytic model

Another important microscopic mechanism that can le
to macroscopic creep is the slow relaxation following fib
failure. In this case, the components of the solid are linea
elastic until they break; however, after breaking, they u
dergo a slow relaxation process, which can be caused,
instance, by the sliding of broken fibers with respect to

FIG. 3. The lifetime of a bundle of 107 fibers as a function of
so2sc above the critical point for three different disorder distrib
tions, i.e., uniform and Weibull distributions withr52,7 have been
considered. The straight line of slope20.5 is drawn to guide
the eye.

FIG. 4. The size-dependent lifetime of the bundle. The in
shows the lifetime of relatively small systems on a linear plot, wh
in the main figure the difference of the lifetime of finite bundl
and the infinite one obtained from Eq.~14! can be seen on a doubl
logarithmic plot. The slope of the fitted straight line is20.9960.02.
2-4
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matrix material or by the creeeping matrix. To take into a
count this effect, our approach is based on the model in
duced in Refs.@9,10#, where the response of a viscoelast
plastic matrix reinforced with elastic and also viscoelas
fibers have been studied. The model consists ofN parallel
fibers, which break in a stress controlled way, i.e., subjec
a bundle to a constant external load fibers break during
time evolution of the system when the local load on th
exceeds a stochastically distributed breaking thresholds i ,i
51, . . . ,N. Intact fibers are assumed to be linearly elas
i.e., s5Ef« f holds until they break, and hence, for the d
formation rate it applies

«̇ f5
ṡ

Ef
. ~15!

Here « f denotes the strain andEf is the Young modulus of
intact fibers. The main assumption of the model is that wh
a fiber breaks its load does not drop to zero instantaneo
instead it undergoes a slow relaxation process introducin
time scale into the system. In order to capture this effect,
broken fibers with the surrounding matrix material are mo
eled by Maxwell elements, as illustrated in Fig. 5, i.e., th
are conceived as a serial coupling of a spring and a das
that results in a nonlinear response

«̇b5
ṡb

Eb
1Bsb

m, ~16!

wheresb and«b denote the time-dependent load and def
mation of a broken fiber, respectively. The relaxation of
broken fiber is characterized by three parametersEb ,B, and
m, whereEb is the effective stiffness of a broken fiber, an
the exponentm characterizes the strength of nonlinearity
the element. We study the behavior of the system for
regionm>1.

FIG. 5. The model solid when intact fibers are linearly elas
and the broken ones with the surrrounding matrix are modeled
Maxwell elements.
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Assuming global load sharing for the load redistributio
the constitutive equation describing the macroscopic ela
behavior of the composite reads

so5s~ t !@12P„s~ t !…#1sb~ t !P„s~ t !…. ~17!

Equation~17! takes into account that broken fibers carry a
a certain amount of loadsb(t); furthermore,P„s(t)… and
12P„s(t)… denote the fraction of broken and intact fibers
time t, respectively@34#. It can be seen from Eq.~17! that
under a constant external loads0, the load of intact fiberss
will also be time dependent due to the slow relaxation of
broken ones.

Due to the boundary condition illustrated in Fig. 5, th
two time derivatives have to be always equal

«̇ f5 «̇b . ~18!

The differential equation governing the time evolution of t
system can be obtained by expressingsb in terms ofs from
Eq. ~17! and substituting it into Eq.~16! and finally into Eq.
~18!,

ṡH 1

Ef
2

1

Eb
F12

1

P~s!
1

p~s!

P~s!2
~s2so!G J

5BFso2s@12P~s!#

P~s! Gm

. ~19!

In order to determine the initial condition for the integratio
of Eq. ~19! the breaking process of fibers has to be analyz
Subjecting the undamaged specimen to an external stresso
all the fibers attain this stress value immediatelly due to
linear elastic response. Hence, the time evolution of the s
tem can be obtained by integrating Eq.~19! with the initial
conditions(t50)5so . Since intact fibers are linearly elas
tic, the deformation-time history«(t) of the model can be
deduced as«(t)5s(t)/Ef , that has an initial jump to«o
5so /Ef . It follows that those fibers that have breakin
thresholdss i smaller than the externally imposedso imme-
diately break.

To characterize the macroscopic behavior of the comp
ite the solutionss(t) of Eq. ~19! have to be analyzed a
different values of the external loadso . Similar to the pre-
vious model, two different regimes ofs(t) can be distin-
guished depending on the value ofso : if the external load
falls below a critical valuesc a stationary solutionss of the
governing equation exists, which can be obtained by set
ṡ50 in Eq. ~19!,

so5ss@12P~ss!#. ~20!

This means that until Eq.~20! can be solved forss the so-
lution s(t) of Eq. ~19! converges asymptotically toss , re-
sulting in an infinite lifetimet f of the composite. Note tha
Eq. ~20! provides also the asymptotic constitutive behav
of the model, which can be measured by quasistatic load
If the external load falls above the critical value, the def
mation rate«̇5ṡ/Ef remains always positive resulting in

,
y

2-5
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macroscopic rupture in a finite timet f . It follows from Eq.
~20! that the critical loadsc of creep rupture coincides with
the static fracture strength of the composite.

The behavior of the system shows again universal asp
in the vicinity of the critical point. Below the critical poin
the relaxation ofs(t) to the stationary solutionss is gov-
erned by a differential equation of the form

dd

dt
;dm, ~21!

whered denotes the differenced(t)5ss2s(t). Hence, the
characteristic time scalet of the relaxation process onl
emerges ifm51; furthermore, in this case alsot;(sc
2so)21/2 holds when approaching the critical point. How
ever, for m.1 the relaxation process is characterized
d(t)5at1/12m, wherea→0 with s0→sc .

Similar to the previous model, it can also be shown t
the lifetime t f of the bundle has a power-law divergen
when the external load approaches the critical point fr
above,

t f;~s02sc!
2(m21/2) for so.sc . ~22!

The exponent is universal in the sense that it is indepen
of the disorder distribution; however, it depends on the str
exponentm, which characterizes the nonlinearity of broke
fibers.

2. Simulation technique

Subjecting a finite bundle ofN fibers toso external stress
those fibers whose failure threshold falls belowso break
immediately. The numberNo of intially breaking fibers can
be estimated from the disorder distribution asNo
'NP(so). In the presence of broken fibers the system slo
down and the remaining fibers of the bundle break one
one in the increasing order of their breaking threshol
sNo11,sNo12,sN . In order to construct an efficient simu
lation technique one has to determine the time elapsed
tween two consecutive breakings during the creep proce

The macroscopic constitutive equation for a system oN
fibers wheni fibers have already failed can be written as

so5s
N2 i

N
1sb

i

N
. ~23!

Making use of Eqs.~16! and ~18!, the differential equation
describing the time evolution of the load of intact fiberss
can be cast in the form

ṡF 1

Ef
2

1

Eb
S 12

N

i D G5BS N

i D m

f i~s!m, ~24!

where f i(x) is introduced for brevity as

f i~x!5so2
N2 i

N
x. ~25!

The timeDt(s i ,s i 11) elapsed between the breaking of t
i th and (i 11)th fibers can be determined by integrating E
~24! from s i to s i 11, which yields formÞ1,
06180
ts

y

t

nt
ss

s
y
,

e-
.

.

Dt~s i ,s i 11!5
Ki

~m21!
@ f i~s i 11!12m2 f i~s i !

12m#,

~26!

and the multiplication factorKi reads as

Ki5
N

N2 i S i

ND m1

B F 1

Ef
2

1

Eb
S 12

N

i D G . ~27!

For m51 the corresponding equation has the form

Dt~s i ,s i 11!5Ki@ ln f i~s i 11!2 ln f i~s i !#. ~28!

Then the simulation proceeds as in the case of viscoela
bundles, but in the above formulas the number of brok
fibers i varies asi 5No ,No11, . . . ,N21, so the time as a
function of s can be obtained as t(s i)
5( j 5No11

i Dt(s j ,s j 11) from which the deformation as a

function of time « i(t) can be determined, sinces5Ef« f
always holds. The lifetimet f of the system can be obtaine
by summing up all theDt ’s.

For the purpose of explicit calculations a uniform dist
bution was prescribed for the breaking thresholdss i between
0 and 1. The deformation as a function of time is plotted
Fig. 6 for several different values of the external load bel
and above the critical load. Similar to the previous mod
the two regimes of the creeping system can be clearly dis
guished.

To study the behavior of the time to failure as a functi
of the distance from the critical point, simulations were p
formed for several different values of the exponentm. In Fig.
7 the results are presented form51.5 andm52.5. The slope
of the fitted straight lines agrees very well with the analy
predictions of Eq.~22!.

The size scaling of time to failuret f was analyzed by
simulating the creep rupture of bundles of sizeN553102

2107, setting a uniform distribution for the breaking thres

FIG. 6. « as a function oft for several values ofso below and
abovesc . N5107 fibers were used.
2-6
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olds. We found thatt f(N) converges to the lifetime of the
infinite systemt f(`) according to the universal law, Eq
~14!, independent of the value of the exponentm. In Fig. 8
the best fit was obtained for both curves with slope21.0
60.05 for bothm values.

III. CONCLUSIONS

The creep rupture of fibrous materials occurring unde
steady external load is microscopically a rather complex p
nomenon depending on a diversity of possible material s
cific mechanisms. Therefore, on the one hand, it is imp
sible to work out a general theoretical framework that ta
into account all the features of the process and has predic
power and, on the other hand, it is very important to rev
universal aspects of the creep process, which do not dep
on specific material properties relevant at the microlevel.

In the present paper we studied the creep rupture o
brous materials in the framework of fiber bundle models t
ing into account two possible microscopic mechanisms
creep:~1! In the first approach the fibers themselves are v
coelastic and they break when their deformation exceed
stochastically distributed threshold value.~2! In the second
model the fibers are linearly elastic until they break; ho
ever, after breaking, their relaxation is not instantaneous
the creeping matrix introduces an intrinsic time scale for
relaxation. The first model can be relevant for natural fib
composites such as wood, which are composed of viscoe
tic fibers @1–4#, while the second model can provide an a
equate description of metal matrix composites reinforced
brittle fibers@26–30#. Analytical and numerical calculation
showed in both models that increasing the external load
specimen, a transition takes place from a partially failed s
of infinite lifetime to a state where global failure occurs a
finite time. The critical load turned to be the static fractu
strength of the material. It was found that irrespective of
details of the two model systems, universal behavior eme

FIG. 7. Lifetimet f as a function of the distance from the critic
point so2sc for two different values of the parameterm. The num-
ber of fibers in the bundle was takenN5107.
06180
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when the creeping system approaches the critical state.
From practical point of view the knowledge of univers

aspects of creep response of materials is very important
materials design, in order to predict creep life of structu
elements and to design composites with higher lifetime. R
cently, extensive experiments have been carried out to de
mine the dependence of lifetime of metal matrix composi
reinforced with ceramic fibers on the value of the exter
load @26–30#. The results obtained are in good qualitati
agreement with our theoretical predictions, i.e., a power-
behavior oft f as a function of the distance from the critic
load was revealed with an exponent that is independen
the distribution of fiber strength but depends on the str
exponentm of the matrix material@28,30#.
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APPENDIX

Here we provide the derivation of the average lifetime
the general case when the lifetimet f of a bundle with a
specific realization of the disorder can be cast in the form

t f5 (
i 50

N21 FGS i

N
,xi 11D2GS i

N
,xi D G , ~A1!

i.e., t f is a sum of terms that depend on the number of bro
fibers i and on a single breaking thresholdxi that can be
given as strain or stress. Thexi ’s are obtained by choosingN
breaking thresholds independently from a cumulative pr
ability distribution P(x) and putting them into increasin

FIG. 8. Size dependence of the lifetimet f for two different
values of the parameterm.
2-7
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order. This treatment includes both models discussed in
present paper. The expectation value of a functionf (xi) can
be determined as

^ f ~xi !&5E N!

~ i 21!! ~N2 i !!
P~x! i 21@12P~x!#N2 i

3p~x! f ~x!dx. ~A2!

The probability distribution in Eq.~A2! that the value of the
i th largest breaking threshold falls betweenx andx1dx has
a sharp peak for largeN values for eachi. The above inte-
gration can be carried out by expanding the distribut
about its peak. After expanding the result in terms of 1/N and
neglecting higher-order terms, we arrive at

^ f ~xi !&5 f ~ x̄i !1
1

2N
P~ x̄i !@12P~ x̄i !#

3F f 9~ x̄i !

@P8~ x̄i !#
2

2
f 8~ x̄i !P9~ x̄i !

@P8~ x̄i !#
3 G , ~A3!
c

, J

lid

06180
he

n

wherex̄i is defined implicitly byP( x̄i)5 i /(N11). Applying
Eq. ~A3! to Eq. ~A1! the resulting summation can be a
proximated by the integrals replacingi /N by the equivalent
P( x̄i)(111/N). Neglecting corrections higher order in 1/N
after straightforward calculations we arrive at

^t f&'E dx]2G„P~x!,x…1
1

2NE dxP~x!@1

2P~x!#]1
2]2G„P~x!,x…, ~A4!

where ]2G(y,x)[]G(y,x)/]x, and ]1
2]2G(y,x)

[]3G(y,x)/]2y]x. Substituting the actual form ofG(y,x)
for a specific model the complete form of the size scaling
lifetime can be obtained. However, it can be seen in
general expression, Eq.~A4!, that the first term provides the
lifetime of the infinite bundle and the only size dependen
is in the prefactor of the second term. Equation~A4! states
that if the lifetime can be written in the form of Eq.~A1! the
lifetime of finite bundles converges to that of the infinite o
as 1/N with increasing number of fibersN.
ett.
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