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Scaling laws of creep rupture of fiber bundles
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We study the creep rupture of fiber composites in the framework of fiber bundle models. Two fiber bundle
models are introduced based on different microscopic mechanisms responsible for the macroscopic creep
behavior. Analytical and numerical calculations show that above a critical load the deformation of the creeping
system monotonically increases in time resulting in global failure at a finite timevhile below the critical
load the system suffers only partial failure and the deformation tends to a constant value giving rise to an
infinite lifetime. It is found that approaching the critical load from below and above the creeping system is
characterized by universal power laws when the fibers have long-range interaction. The lifetime of the com-
posite above the critical point has a universal dependence on the system size.
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[. INTRODUCTION ing of the time to failure is studied. Beyond the theoretical
understanding, exploring universal features of creep helps
Under high steady stresses fiber composites may underggvaluate experimental data and can serve as a guide to ex-
time-dependent deformation resulting in failure called creegract the relevant information invariant under the variation of
rupture, which limits their lifetime, and hence, has a highspecific material properties.
impact on the applicability of these materials in construction We consider only the case of global load shari@.-S)
elements. Both natural fiber composites like wode 4] and  for the redistribution of load following fiber failurgl3,18—
various types of fiber reinforced compositgs-10 show 24]. For several types of composite materials, GLS provides
creep rupture phenomena, which have attracted continuo@) adequate approaf®6—-3@, and it has the advantage that
theoretical and experimental interest over the past years. THgany of the important GLS results can be obtained in closed
underlying microscopic failure mechanism of creep ruptureanalytic forms. During creep at the critical point and above
is very complex depending on several characteristics of thé, stress localization occurs, which can be captured by local-
specific types of materials, and is far from being well underized load sharing in fiber bundle mod¢l3,17,2], but this
stood. Theoretical studies encounter various challenges: da beyond the scope of our investigations. The present study
the one hand, applications of fiber composites require thé focused on analytic modeling in the framework of GLS.
development of analytical and numerical models, which aré\Ve also develop efficient simulation techniques for testing
able to predict the damage histories of loaded composites ithe analytic results, furthermore, to study finite-size system.
terms of the specific parameters of constituents. On the oth&ince similar studies with local load sharing require large-
hand, creep rupture, similarly to other rupture phenomenagcale computer simulations and a large amount of data pro-
presents a very interesting problem for statistical physics, i€essing, it will be presented in a forthcoming publication.
is still an open problem to embed creep rupture into the In a broad class of continuously reinforced materials no
general framework of statistical physics and to understangignificant stress enhancement occurs around failed fibers so
the analogy between rupture phenomena and phase tran§pat a consistent interpretation of the damage process can be
tions. obtained in the framework of GL®26—-30. Our theoretical
Creep failure tests are usually performed under uniaxiafésults proved to be in a good qualitative agreement with
tensile loading when the specimen is subjected either to gecent experiments on the creep rupture life of metal matrix
constant loadr, or to an increasing loa@tamp loadingand ~ composites reinforced with brittle fibef26-30.
the time evolution of the damage process is monitored by
recording the straim of the specimen and the acoustic sig-
nals emitted by microscopic failure everts—10. In the
present paper we study the creep rupture of fiber composites In order to work out a theoretical description of creep
in the framework of fiber bundle mode[41-25 focusing  failure we introduce two fiber bundle models improving the
on general characteristics of creep rupture. Our main goal islassical fiber bundle modelsl1,12, which have proven
to reveal the universal aspects of a creeping system, whichery successful in the study of fracture of disordered mate-
do not depend on specific material properties. We will deriverials [13—20,23,24 The two models differ in the micro-
scaling laws that emerge when approaching the failure stressopic mechanisms assumed to be responsible for the mac-
both from below and above; furthermore, the finite-size scalroscopic creep behaviofl) in the first approach the fibers
themselves are viscoelastic and they break when their defor-
mation exceeds a stochastically distributed threshold value
*Electronic address: feri@dtp.atomki.hu (strain controlled breaking(2) in the second model the fi-
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for the asymptotic strain values, the formulation of the fail-
ure criterion in terms of strain instead of stress implies that
under a certain steady load the same amount of damage oc-
curs as in the case of stress controlled failure; however, the
breaking of fibers is not instantaneous but distributed over
time. When a fiber fails its load has to be redistributed to the
intact fibers. Assuming global load sharing, the time evolu-

o tion of the system under a steady external logds finally
|__| |__| |__| described by the equation

oo -
]__—W—BS-FES, 3

where the viscoelastic behavior of fibers is coupled to the
failure of fibers in a global load sharing framewd#Kl].

For the behavior of the solutions of E) two distinct
) o ) ) regimes can be distinguished depending on the value of the
FIG. 1. The viscoelastic fiber bundle: intact fibers are mOdeledexternal loadr,: When o, is below a critical valuer., Eq.

by Kelvin-Voigt elements. After fiber breaking the corresponding (3) has a stationary solutios,, which can be obtained by
element is removed from the model. R ] !
settinge=0 in Eq. (3):

bers are linearly elastic until they break stochastically in a
stress-controlled way; however, after breaking, their relax-
ation is not instantaneous but the sliding of the broken fibe
with respect to the matrix material, and the yielding or creep
ing of the matrix introduces an intrinsic time scale for the
relaxation.

The mathematical formalism of the first modeiscoelas- X ) . . .
tic bundl® is more simple; hence, the steps of analysis will &Y. sol_utlor_1 exists; furthermore, remains always positive,
be presented in details for this case. For the second modéfhich implies that foro> o the strain of the systera(t)
the corresponding results will be summarized. monotonlcally increases until the system fails globally at a
time t; [31].

In the regime o,<o0., EQ. (4) also provides the
asymptotic constitutive behavior of the fiber bundle, which
1. Analytic model can be measured by controlling the external leagdand
letting the system relax teg. It follows from the above
argument that the critical value of the load is the static
fracture strength of the bundle, which can be determined
from Eq.(4), aso.=Ee[1—P(e.)], whereg, is the solu-
tion of the equatiordaoldss|sc=0 [18]. Sinceoy(ey has a

maximum valueo, at e., in the vicinity of . it can be
o= Be+Ee, (1) approximated as

0o=Ee1—P(es)]. 4

ft means that until this equation can be solved £grat a
‘given external loadr,, the solutione(t) of Eq. (3) con-
verges toeg whent—oo, and no macroscopic failure occurs.
However, wheno, exceeds the critical value. no station-

A. Viscoelastic fiber bundle

Our model consists dfl parallel fibers having viscoelastic
constitutive behavior. For simplicity, the pure viscoelastic
behavior of fibers is modeled by a Kelvin-Voigt element,
which consists of a spring and a dashpot in paraiek Fig.

1) and results in the constitutive equation

~ _ _ 2
where 8 denotes the damping coefficient aids the Young 7o~ 0 Alec—es), ®)

modulus of fibers. Equatiofl) provides the time-dependent

, X ) where the multiplication factoA depends on the probability
deformatione(t) of a fiber at a fixed external loadl,:

distribution P. A complete description of the system can be
obtained by solving the differential equati¢d). After sepa-
e(t)= %(l_efEtlﬂ)_i_soefEt/B, 2) ration of variables the integral arises

1-P(e)
wheree, denotes the initial strain 4= 0. It can be seen that t=,8f dsa —Ee[1-P(e)] +C, (6)
e(t) converges tao,/E for t—co, which implies that the °
asymptotic strain fulfills Hook’s law. To incorporate breaking where the integration consta@tis determined by the initial
in the model, we introduce a strain controlled failure crite-conditione(t=0)=0.
rion for fibers: a fiber fails during the time evolution of the  The creep rupture of the viscoelastic bundle can be inter-
system if its strain exceeds a damage threslgldwhich is  preted so that fow,<o the system suffers only a partial
an independent identically distributed random variable of fi-fgjlure that implies an infinite lifetime,; =, and the emer-
bers with probability densitp(e4) and cumulative distribu-  gence of a macroscopic stationary state, while above the
tion P(ed)zfgdp(x)dx. Due to the validity of Hook’s law critical load o> o global failure occurs at a finite timig,
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which can be determined by evaluating the integral in(By. 2. Finite size effect

over the whole domain of definition d¥(e). In the above analytic treatment the size of the system, i.e.,
Below the critical pointr,< o the bundle relaxes to the he number of fibers in the bundle, is infinite. However, it
stationary deformatios, through a decreasing breaking ac- can pe expected that the lifetime of a finite bundle has a
tivity. To find the characteristic time scale of this relaxation ontrivial size scaling even in the case of global load shar-
process, the behavior eft) has to be analyzed in the vicin- g During the creep rupture process the fibers of a finite
ity of &5. It is useful to introduce a new variabeas 5(t)  pundle break one by one in the increasing order of their

=es—#(t). The governing differential equation éfcan be  preaking thresholds. Let; ,j=1, ... N denote the breaking
obtained from Eq(3) by expanding it around: thresholds assigned to the fibers in a realization of the
bundle. Since fibers break one by one, the actual load on the
intact fibers after the failure dffibers isaj= 0o, N/(N—1i),
wherei=0,... N—1, and the timeAt(e;,s;, 1) between

the breaking of thath and (-+1)th fibers(in the ordered

The solution of Eq(7) has the formd~exg —t/7], wherer  Series reads as
is the characteristic time scale of the relaxation process:

dé E

dt B

esp(es)

O

sl

At(ej,ei41)=— ’

E
B 1
=_r . 8 (12
TE[, eles ®
1T 1-P(eg)] The lifetimet; of a sample oN fibers takes the form
N—-1

It is a very important question how the relaxation time _ s
changes when the external driving approaches the critical t(N) 26 Atleiseire). (13

point o, from below. Based on Eq5) it can be simply
shown that In order to determine how; depends o\, Eg. (13) has to
be averaged over many realizations of the disorder distribu-
T~(oe—0y) Y2 for o,<o, (9)  tion, which can be performed analytically. The details of the
analytic calculations are summarized in the Appendix. Fi-

which means that approaching the critical point from belowally the average lifetim¢t;(N)) of a bundle ofN fibers can

the relaxation time of the system diverges according to £€ cast in the form

universal power law with an exponentl/2 independent of

the form of disorder distribution. Note that a similar power- (tf(N))wtf(oo)Jr'BUOf

law divergence of the number of successive relaxation steps N

was found in Refd.32,33 for a dry fiber bundle subjected to

a constant load. Equation(14) shows that for finite bundles the average life-
Above the critical point the behavior of the lifetime of the time (t;(N)) converges to the lifetime of the infinite bundle

system can be analyzed analogously whengoes too.  t;() as ~1/N with increasing number of fiberhl. It is

from above. Whenr, is in the vicinity of o, i.e., 0,=0. interesting to note that in the case of global load sharing the

+Ao,, whereAo,< o, it can be expected that the curve of average strength of the bundle. does not have a size de-

(1) falls very close tee for a very long time and the break- pendence.

ing of the system occurs suddenly. Hence, the total time to

failure, i.e., the integral in Eq6), is dominated by the region 3. Simulation technique

close toe. when Ag, is small. Making use of the power  post of the analytic results of the preceding sections, ex-
series expansion, E¢S), the integral in Eq(6) can be re-  cent for the finite-size scaling df, were obtained for infi-

deEeP(e)[1—P(¢g)]
{oo—Ee[1-P(e)]}*

(14)

written as nite bundles. Computer simulations of the creep rupture of
finite bundles are needed to justify the validity of analytic
1-P(e) predictions for finite systems and to be able to model the
tf”lgf dsﬁ' (10 rupture process of realistic finite systems.
oo~ A(e.—¢)

In the framework of GLS an efficient simulation tech-
. ) ) nique can be worked out for the failure process. Based on the
which has to be evaluated over a smallinterval in the 50 ments of the preceding subsection, the GLS simulation
vicinity of .. After performing the integration it follows of the creep process of a bundle Wffibers proceeds as
follows: (1) Random breaking thresholds, i=1,... N
ti=(0o—0o) Y2 for oo>o. (1) are drawn from a probability distributiop, then the thresh-
olds are put into increasing ordé€R) The timeAt(e;,&j1)
Thus,t; has a power-law divergence at with a universal between the breaking of théh and (+ 1)th fibers is calcu-
exponent— 3 independent of the specific form of the disor- lated according to Eq(12). (3) The time elapsed till the
der distributionP (&), similar to = below the critical point.  breaking of the ith fiber is obtained as t(e;)
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FIG. 2. ¢(t) for several values ofr, below and abover, for a
bundle of 10 fibers. The critical straim; and the time to failure;
for one example are indicatetl, denotes the characteristic time FIG. 3. The lifetime of a bundle of 70fibers as a function of
to=pB/E of the system. o,— o above the critical point for three different disorder distribu-

tions, i.e., uniform and Weibull distributions wigh=2,7 have been
zg}lém(si .&i+1), from which the deformation as a function considered. The straight line of slope0.5 is drawn to guide
of time &(t) can be determined by inversion. The lifetime e eYe-
of the finite bundle can be obtained making use of @®).

For simulations we considered a uniform distribution of
failure thresholds between 0 and a maximum valyewith 1. Analytic model

the probability density functiop(e) = 1/e, and distribution Another important microscopic mechanism that can lead
function P(e)=e/er,. In this case the stationary solution, to macroscopic creep is the slow relaxation following fiber
the critical load and the corresponding critical strain can bgaijlure. In this case, the components of the solid are linearly
obtained asr,=Ee(1—eley), o.=Een/4, ec=en/2, re-  elastic until they break; however, after breaking, they un-
spectively. e,=1 was set in all the simulations. The dergo a slow relaxation process, which can be caused, for
deformation-time diagranz(t) obtained by simulations is instance, by the sliding of broken fibers with respect to the
presented in Fig. 2 for several different valuesogfbelow
and aboves.. The two regimes depending on the value of

0y=0¢

B. Slowly relaxing fibers

the external loadr, can be clearly distinguished. i so2lt ]
To test the validity of the universal power-law behavior of AL L szl 14

ts as a function of the distance from the critical load given by 107 g

Eqg. (11), simulations were performed with various disorder o § s.18r1 T

distributions, i.e., besides the uniform distribution the £ | 516 1]

Weibull distribution of the formP(s)=1—exd—(s/\y] g 0°F Y et

was employed. The value of the characteristic stiaiwas % i o 5000 1001(110 16000 200004

set to 1, and the shape of the distribution was controlled byE [
varying the value ofp. The results are presented in Fig. 3, 5. 10°
where an excellent agreement of the simulations and the ane—
lytic results can be observed. Figure 3 supports that the ex
ponent oft; as a function ofr,— o is universal, it does not 10* o 7
depend on the specific form of the disorder distribution. i ]
To study the finite-size scaling of the time to failuke a
uniform distribution was used for the failure thresholds. The e 10t 100 1¢ 1y
value of the external load was fixed abawg and the num-
ber of fibersN was varied from % 10? to 10/. Averages
were calculated over f0samples for each system si2e FIG. 4. The size-dependent lifetime of the bundle. The inset
The results obtained by simulations are presented in Fig. 4hows the lifetime of relatively small systems on a linear plot, while
where an excellent agreement of simulations and analytigy the main figure the difference of the lifetime of finite bundles
results can be observed for four orders of magnitude in th@nd the infinite one obtained from E@.4) can be seen on a double
system sizeN. logarithmic plot. The slope of the fitted straight line-i€.99+0.02.
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Assuming global load sharing for the load redistribution,
the constitutive equation describing the macroscopic elastic
behavior of the composite reads

oo=0(D)[1=P(a(t))]+ on(t) P(a(t)). 17

Equation(17) takes into account that broken fibers carry also
a certain amount of load,(t); furthermore,P(o(t)) and
1—-P(o(t)) denote the fraction of broken and intact fibers at
..... time t, respectively{34]. It can be seen from Ed17) that
under a constant external loaq, the load of intact fibers-
will also be time dependent due to the slow relaxation of the

|7_| |7_| broken ones.
Due to the boundary condition illustrated in Fig. 5, the

two time derivatives have to be always equal

éf:éb. (18)

The differential equation governing the time evolution of the

FIG. 5. The model solid when intact fibers are linearly elastic,SYStem can be obtained by expressingn terms ofo from
and the broken ones with the surrrounding matrix are modeled b{Fd- (17) and substituting it into Ec(16) and finally into Eq.

Maxwell elements. (18),
matrix material or by the creeeping matrix. To take into ac- 111 1 p(o)

. . . o=~ —|1-—=—+——=(0—0y)
count this effect, our approach is based on the model intro- Ei E, P(d)  P(¢)?

duced in Refs[9,10], where the response of a viscoelastic-
plastic matrix reinforced with elastic and also viscoelastic
fibers have been studied. The model consistdqfarallel
fibers, which break in a stress controlled way, i.e., subjecting
a bundle to a constant external load fibers break during thin order to determine the initial condition for the integration
time evolution of the system when the local load on themof Eq. (19) the breaking process of fibers has to be analyzed.
exceeds a stochastically distributed breaking threshold Subjecting the undamaged specimen to an external sigess

m

0o~ 0[1-P(0)]
P(o)

(19

=1,... N. Intact fibers are assumed to be linearly elasticall the fibers attain this stress value immediatelly due to the
i.e., o=Ee¢ holds until they break, and hence, for the de-linear elastic response. Hence, the time evolution of the sys-
formation rate it applies tem can be obtained by integrating Eq9) with the initial
. conditiono(t=0)= 0, . Since intact fibers are linearly elas-
.o tic, the deformation-time historg(t) of the model can be
g, (19 geduced as:(t)=o(t)/E,, that has an initial jump te,

=0,/E;. It follows that those fibers that have breaking
Here e; denotes the strain arid; is the Young modulus of thresholdss; smaller than the externally imposeq imme-
intact fibers. The main assumption of the model is that wheliately break.
a fiber breaks its load does not drop to zero instantaneously, To characterize the macroscopic behavior of the compos-
instead it undergoes a slow relaxation process introducing #e the solutionso(t) of Eq. (19) have to be analyzed at
time scale into the system. In order to capture this effect, théifferent values of the external loag,. Similar to the pre-
broken fibers with the surrounding matrix material are mod-vious model, two different regimes af(t) can be distin-
eled by Maxwell elements, as illustrated in Fig. 5, i.e., theyguished depending on the value @f: if the external load
are conceived as a serial coupling of a spring and a dashpéills below a critical valuer. a stationary solutiomrg of the

that results in a nonlinear response governing equation exists, which can be obtained by setting
. o=0 in Eq.(19),
=2 B (16)
&b E, Tb s oo=01-P(oy)]. (20)

whereay, ande, denote the time-dependent load and defor-This means that until E20) can be solved forrg the so-
mation of a broken fiber, respectively. The relaxation of thelution o(t) of Eq. (19) converges asymptotically tas, re-
broken fiber is characterized by three parameigy S8, and Sulting in an infinite Iifetimetf of the composite. Note that
m, whereE, is the effective stiffness of a broken fiber, and Ed. (20) provides also the asymptotic constitutive behavior
the exponenm characterizes the strength of nonlinearity of of the model, which can be measured by quasistatic loading.
the element. We study the behavior of the system for thdf the external load falls above the critical value, the defor-
regionm=1. mation ratee = o/E; remains always positive resulting in a
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macroscopic rupture in a finite tintg. It follows from Eq. 1.0
(20) that the critical loadr. of creep rupture coincides with
the static fracture strength of the composite.

The behavior of the system shows again universal aspect 0.8
in the vicinity of the critical point. Below the critical point

0.9

0.7

the relaxation ofo(t) to the stationary solutiomrg is gov- I ]
erned by a differential equation of the form 0.6 i

dé w 05

o _gm -

dt 5 ’ (21) L

0.4

where § denotes the differencé(t) = os— o(t). Hence, the 0.3 ]
characteristic time scale of the relaxation process only

emerges ifm=1; furthermore, in this case also~ (o, 0.2
—0,) 2 holds when approaching the critical point. How- o1
ever, form>1 the relaxation process is characterized by

te t

s(t)=at’*"™ wherea—0 with og— 0. 0.0 —— ' ' ' ' '
Similar to the previous model, it can also be shown that 0 200 400 600 800 1000 1200 1400
the lifetime t; of the bundle has a power-law divergence 1;/1;0
when the external load approaches the critical point from
above, FIG. 6. ¢ as a function ot for several values of, below and
aboveos,. N=10' fibers were used.
ti~(oo—0o MY for o,>o0,. (22 e
The exponent is universal in the sense that it is independent - Ki o l-m_ g y1-m
of the disorder distribution; however, it depends on the stress At(oi,0iva) (m—1) [fi(oisa) fiCo)™ 1,
exponentm, which characterizes the nonlinearity of broken (26)
fibers.
and the multiplication factoK; reads as
2. Simulation technique . N i\m171 1 . N ,
Subjecting a finite bundle df fibers too, external stress, ""N=i|N/ B|E; E, Nk (27)

those fibers whose failure threshold falls belewy break
immediately. The numbeN, of intially breaking fibers can For m=1 the corresponding equation has the form

be estimated from the disorder distribution a¥,

~NP(0o,). In the presence of broken fibers the system slows At(oi,0i11)=K[Infi(ois1)—Infi(o)]. (28
down and the remaining fibers of the bundle break one by

one in the increasing order of their breaking thresholds .
gy - bundles, but in the above formulas the number of broken
ON,+1<ON +2<0N- IN order to construct an efficient simu- fibersi varies as = N. N+ 1 N—1 so the time as a
(o) [o] L | 1

lation technique one has to determine the time elapsed b‘?ﬂnction of ¢ can be obtained as t(o)

. . . - i

tween two consecutive brgak_mgs dur|r]g the creep process.:E}:N +1At(0;,0;,1) from which the deformation as a
The macroscopic constitutive equation for a systenNof 0

fibers wheni fibers have already failed can be written as ~ function of time ;(t) can be determined, since=Eie;
always holds. The lifetimé; of the system can be obtained

N-—i i by summing up all the\t’s.
To= 0T T ObN- 23 yFor the gurgose of explicit calculations a uniform distri-
bution was prescribed for the breaking threshattdbetween
Making use of Eqs(16) and (18), the differential equation o and 1. The deformation as a function of time is plotted in
describing the time evolution of the load of intact fibers  Fig. 6 for several different values of the external load below

Then the simulation proceeds as in the case of viscoelastic

can be cast in the form and above the critical load. Similar to the previous model,
11 1 N N\m the two regimes of the creeping system can be clearly distin-
g E——E—<1—i—”=5<i— fi(O')m, (24) guished.
f b

To study the behavior of the time to failure as a function
of the distance from the critical point, simulations were per-
formed for several different values of the exponenitn Fig.

N—i 7 the results are presented for=1.5 andm=2.5. The slope
fix)=0o= = (29 of the fitted straight lines agrees very well with the analytic
predictions of Eq(22).
The timeAt(o;,0i. 1) elapsed between the breaking of the The size scaling of time to failure; was analyzed by
ith and (+ 1)th fibers can be determined by integrating Eq.simulating the creep rupture of bundles of sie=5x 107
(24) from o; to .1, Which yields form+1, —10’, setting a uniform distribution for the breaking thresh-

wheref;(x) is introduced for brevity as
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FIG. 7. Lifetimet; as a function of the distance from the critical FIG. 8. Size dependence of the lifetime for two different
pointo,— o for two different values of the parameter The num-  values of the parameten.
ber of fibers in the bundle was takéh=10’.

o when the creeping system approaches the critical state.
olds. We found that(N) converges to the lifetime of the  From practical point of view the knowledge of universal
infinite systemt() according to the universal law, Ed. aspects of creep response of materials is very important for
(14), independent of the value of the exponemtin Fig. 8  materials design, in order to predict creep life of structural
the best fit was obtained for both curves with slopd.0  elements and to design composites with higher lifetime. Re-

+0.05 for bothm values. cently, extensive experiments have been carried out to deter-
mine the dependence of lifetime of metal matrix composites
[ll. CONCLUSIONS reinforced with ceramic fibers on the value of the external

! ) . load [26—30. The results obtained are in good qualitative
The creep rupture of fibrous materials occurring under a,4reement with our theoretical predictions, i.e., a power-law

steady external '0?0' is micro_scop_ically a rather Comp'?x IC’h":'behr:lvior oft; as a function of the distance from the critical
nomenon depending on a diversity of possible material Spey,, \was revealed with an exponent that is independent of

cific mechanisms. Therefore, on the one hand, it is impOSge gistribution of fiber strength but depends on the stress
sible to work out a general theoretical framework that take%xponenlm of the matrix materia[28,30.

into account all the features of the process and has predictive
power and, on the other hand, it is very important to reveal
universal aspects of the creep process, which do not depend

on specific material properties relevant at the microlevel. This work was supported by the project SFB381, by the
In the present paper we studied the creep rupture of fiNATO Grant No. PST.CLG.977311, and by the OTKA
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ing into account two possible microscopic mechanisms obf the Bdyai Janos and Bkesi Gyagy Foundations of the

creep:(1) In the first approach the fibers themselves are visHungarian Academy of Sciences and of the Research Con-

coelastic and they break when their deformation exceeds @act No. FKFP 0118/2001.

stochastically distributed threshold valug) In the second

model the fibers are linearly elastic until they break; how- APPENDIX

ever, after breaking, their relaxation is not instantaneous but

the creeping matrix introduces an intrinsic time scale for the Here we provide the derivation of the average lifetime for

relaxation. The first model can be relevant for natural fiberthe general case when the lifetinte of a bundle with a

composites such as wood, which are composed of viscoelaspecific realization of the disorder can be cast in the form

ACKNOWLEDGMENTS

tic fibers[1—4], while the second model can provide an ad- N—1 .
equate description of metal matrix composites reinforced by _ el
brittle fibers[26—30. Analytical and numerical calculations b 20 G NXir G N | (A1)

showed in both models that increasing the external load in a

specimen, a transition takes place from a partially failed statee., t; is a sum of terms that depend on the number of broken
of infinite lifetime to a state where global failure occurs at afibersi and on a single breaking threshokgd that can be
finite time. The critical load turned to be the static fracturegiven as strain or stress. TRes are obtained by choosing
strength of the material. It was found that irrespective of thebreaking thresholds independently from a cumulative prob-
details of the two model systems, universal behavior emergesbility distribution P(x) and putting them into increasing
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order. This treatment includes both models discussed in thgherex; is defined implicitly byP(x;)=i/(N+1). Applying
present paper. The expectation value of a funcfipg) can  Eq. (A3) to Eq. (Al) the resulting summation can be ap-

be determined as proximated by the integrals replacingN by the equivalent
1 ) , P(x;)(1+1/N). Neglecting corrections higher order inNL
N! (xi)(1+1/N). Neglecting ions higher order inNL/
(f(xi))= f WP(X)'_l[l— P(x)IN! after straightforward calculations we arrive at
1
X p(x)f(x)dx. (A2) (tf)mfdxazG(P(x),x)er dxP(x)[1

The probability distribution in Eq(A2) that the value of the
ith largest breaking threshold falls betweeandx+ dx has
a sharp peak for larghl values for each. The above inte- where  3,G(y,x)=dG(y,x)/dx, and  929,G(y,X)
gration can be carried out by expanding the distribution= ;3G (y, x)/g%yax. Substituting the actual form dB(y,x)
about its peak. After expanding the resultin terms &f &hd  for 5 specific model the complete form of the size scaling of

—P(x)]920,G(P(x),%), (A4)

neglecting higher-order terms, we arrive at lifetime can be obtained. However, it can be seen in the
_ 1 _ general expression, EGA4), that the first term provides the
(f(x))=Ff(x)+ mP(xi)[l— P(xi)] lifetime of the infinite bundle and the only size dependence
is in the prefactor of the second term. Equati@@) states
f”(;i) f,(;i) P//(;i) t.hat' if the Ii.fe'time can be written in the form of E(ﬁl') .the
—— — | (A3) lifetime of finite bundles converges to that of the infinite one
[P"(x)] [P"(x)] as 1N with increasing number of fiben.
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